Key Concepts

Learn Concepts & Fundamentals

Direct Proportion

Two quantities a and b are said to be in direct proportion if they increase or decrease together. In other words, the ratio of their corresponding values remains constant. This means that,

a/ b = k

where k is a positive number, then the quantities a and b are said to vary directly.

In such a case if the values b1, b2 of b corresponding to the values a1, a2 of a, respectively then it becomes;

a1//b1 = a2 /b2

The direct proportion is also known as direct variation.

Directly Proportion Symbol

The symbol used to represent the direct proportion is “∝”.

Consider the statement,

a is directly proportional to b

This can be written using the symbol as:

a ∝ b

Consider the other statement, a = 2b

In this case, it shows that a is proportional to b, and the value of one variable can be found if the value of other variable is given.

For example: 

Let b=7

Therefore, a = 2 x 7 = 14

Similarly, if you take the value of “a” as 14, you will find the value of b

Such that

14 = 2 x b

14/ 2 = b

Therefore, b=7

Inverse Proportion

The value is said to inversely proportional when one value increases, and the other decreases. The proportionality symbol is used in a different way. Consider an example; we know that the more workers on a job would reduce the time to complete the task. It is represented as:

Number of workers ∝ (1/ Time taken to complete the job)

Inverse Proportion Definition

Two quantities a and b are said to be in inverse proportion if an increase in quantity a, there will be a decrease in quantity b, and vice-versa. In other words, the product of their corresponding values should remain constant.  Sometimes, it is also known as inverse variation

That is, if ab = k, then a and b are said to vary inversely. In this case, if b1, b2 are the values of b corresponding to the values a1, a2 of a, respectively then a1 b1 = a2 b2 or a1/a2 = b2 /b1

The statement ‘a is inversely proportional to b is written as

a ∝ 1/b

Here, an equation is given that involves the inverse proportions that can be used to calculate the other values.

Let,

a = 25/b

Here a is inversely proportional to b

If one value is given, the other value can be easily found.

Say b=10

a= 25/10 = 2.5

Similarly, if a = 2.5, the value of b can be obtained.

2.5 = 25/b

b= 25/2.5 = 10

How to solve problems with Direct Proportion?

How to solve problems with Inversely Proportional variables?

x1 y1 = x2 y2 = x2 y2 = x2 y2

 

Mock Test

Test your knowledge